2. Konferenztag, 03. September 2025

9:10 am - 9:20 am Eröffnung durch die Vorsitzende Jessica Cordes, Interim Head Of Clinical Operations, Clinical Excellence


9:20 am - 9:50 am GenAI Meets RWD: Building a Multi-Agent GenAI Platform for RWD/RWE & Insight

Abhishek Choudhary - Principal Data Engineer, Bayer

-Bayer’s modular, multi-agent GenAI platform for extracting insights from Real-World Data (RWD) and Real-World Evidence (RWE).

-How specialized agents handle data curation, harmonization, and evidence generation across complex healthcare datasets.

-Governance, scalability, and compliance considerations for deploying GenAI in regulated pharma environments.

Abhishek Choudhary

Principal Data Engineer
Bayer

9:50 am - 10:20 am Die Rolle von KI bei der Generierung von Evidence

Sebastian Kloss - Global Head RWE, Menarini Group

-Wie KI die Evidenzgenerierung transformiert und die Geschwindigkeit und Genauigkeit der Datenanalyse für klinische und reale Umgebungen verbessert.

-Spezifische KI-Tools und -Methoden, die verwendet werden, um komplexe Datensätze zu synthetisieren und in umsetzbare Erkenntnisse zu extrapolieren.

-Erkunden Sie die zukünftige Landschaft der KI in regulatorischen und Compliance-Rahmenbedingungen und konzentrieren Sie sich dabei auf ihr Potenzial zur

Rationalisierung von Einreichungen und zur Verbesserung von Entscheidungsprozessen.

Sebastian Kloss

Global Head RWE
Menarini Group

10:20 am - 10:50 am Kaffeepause mit Networking Möglichkeit

-Data quality and integrity: Establish rigorous processes for data collection, review, and cleansing. High-quality data is essential for training reliable AI models.

-Data integration and management: Working with various data types, including chemical data, biological data, clinical outcomes, patient records, and realworld evidence. Integrate these data sources and establish effective data management systems and practices.

-Human-machine interaction: Preparing your organization for the integrated use of AI through data and AI competency programs, continuing education, and change management.

-Legal and ethical considerations: Understanding AI law. Ethical implications of AI, including bias in AI models and the impact of AI decisions in clinical settings.

Abhishek Choudhary

Principal Data Engineer
Bayer

Dimitri Metzger

Digital, Data & IT Business Partner for Generative AI, Medical & Development Uni
Merck

11:20 am - 11:50 am Integration von KI in Organisationen der Pharmaindustrie

Joachim Hagel - Medical AI Engineer, InfectoPharm Arzneimittel Und Consilium

-Erfolgsfaktoren und Hindernisse bei der Einführung von KI in pharmazeutischen Organisationen

-Rollenverteilung zwischen Fachexperten, Data Scientists und IT – wie Zusammenarbeit gelingt

-Strategien zur Skalierung von KI-Anwendungen unter Berücksichtigung regulatorischer und organisatorischer Rahmenbedingungen

Joachim Hagel

Medical AI Engineer
InfectoPharm Arzneimittel Und Consilium

11:50 am - 12:20 pm KI im Dienste der Qualität

-Warum KI für das Qualitätsmanagement einsetzen?

-Regulatorische Grenzwerte

-Überbrückung der Kluft zwischen Technologie- und Fachexperten

-Qualität der Zukunft

12:20 pm - 1:50 pm Mittagspause mit Networking-Möglichkeiten

1:50 pm - 2:20 pm Target discovery using GenAI, knowledge graphs and literature

Nikola Milosevic - Science Fellow, Bayer AG

-We have developed systems based on GenAI to rank and explain targets

-The system is based on literature, clinical trial documents, and knowledge graph

-Current state-of-the-art LLMs are able to analyze multi-modal data and provide comprehensive evaluation of the targets

-Pipeline can produce in few hours comprehensive summary of possible targets for a disease

Nikola Milosevic

Science Fellow
Bayer AG

2:20 pm - 2:50 pm Before GenAI, Get Your Data Right: Why FAIR Data Matters

-The GenAI Promise: How AI is expected to transform clinical trials—faster decision-making, better predictions, and improved efficiency.

-The Risk of Bad Data: Without structured, high-quality, and governed data, Gen AI models risk hallucinations, bias, and unreliable outputs.

-FAIR Data as a Prerequisite: Findable, Accessible, Interoperable, and Reusable (FAIR) data principles lay the foundation for effective and trustworthy Gen AI. FAIR

and Gen AI are not competing forces; they enhance each other. FAIR data enables AI to generate meaningful, actionable insights.

-The Roadmap Forward: Steps pharma organizations can take to ensure data governance and AI readiness for clinical trials.

2:50 pm - 3:20 pm AI in Proteomics: Transforming Clinical Research through Multi-Omics Data Integration• Recent advanced in biomarker discovery using multi-omics data and AI

Ornella Cominetti - Senior Omics Data Specialist, Nestlé

-Important role of biobanks and recent large proteomic studies/cohorts

-AI versus standard statistical models in the context of omics data analysis

-Examples in metabolic health, cancer, brain health, and infectious diseases

Ornella Cominetti

Senior Omics Data Specialist
Nestlé

3:20 pm - 3:50 pm Maschinelles Lernen in der frühen Arzneimittelforschung – Wie Bayer Deep Learning nutzt, um Arzneimittelkandidaten gleichzeitig im phänotypischen, chemischen und transzipomischen Raum zu erforschen

-Wie Bayer Cell-Painting-Assays im großen Maßstab erstellt

-Wie man maschinelles Lernen nutzt, um Mikroskopiebilder für phänotypische Profile einzubetten

-ML-Modelle zur Einbettung chemischer Strukturen

-Analyse multimodaler Daten

3:50 pm - 3:50 pm Ende der Konferenz