-Bayer’s modular, multi-agent GenAI platform for extracting insights from Real-World Data (RWD) and Real-World Evidence (RWE).
-How specialized agents handle data curation, harmonization, and evidence generation across complex healthcare datasets.
-Governance, scalability, and compliance considerations for deploying GenAI in regulated pharma environments.
-Wie KI die Evidenzgenerierung transformiert und die Geschwindigkeit und Genauigkeit der Datenanalyse für klinische und reale Umgebungen verbessert.
-Spezifische KI-Tools und -Methoden, die verwendet werden, um komplexe Datensätze zu synthetisieren und in umsetzbare Erkenntnisse zu extrapolieren.
-Erkunden Sie die zukünftige Landschaft der KI in regulatorischen und Compliance-Rahmenbedingungen und konzentrieren Sie sich dabei auf ihr Potenzial zur
Rationalisierung von Einreichungen und zur Verbesserung von Entscheidungsprozessen.
-Data quality and integrity: Establish rigorous processes for data collection, review, and cleansing. High-quality data is essential for training reliable AI models.
-Data integration and management: Working with various data types, including chemical data, biological data, clinical outcomes, patient records, and realworld evidence. Integrate these data sources and establish effective data management systems and practices.
-Human-machine interaction: Preparing your organization for the integrated use of AI through data and AI competency programs, continuing education, and change management.
-Legal and ethical considerations: Understanding AI law. Ethical implications of AI, including bias in AI models and the impact of AI decisions in clinical settings.
-Erfolgsfaktoren und Hindernisse bei der Einführung von KI in pharmazeutischen Organisationen
-Rollenverteilung zwischen Fachexperten, Data Scientists und IT – wie Zusammenarbeit gelingt
-Strategien zur Skalierung von KI-Anwendungen unter Berücksichtigung regulatorischer und organisatorischer Rahmenbedingungen
-Warum KI für das Qualitätsmanagement einsetzen?
-Regulatorische Grenzwerte
-Überbrückung der Kluft zwischen Technologie- und Fachexperten
-Qualität der Zukunft
-We have developed systems based on GenAI to rank and explain targets
-The system is based on literature, clinical trial documents, and knowledge graph
-Current state-of-the-art LLMs are able to analyze multi-modal data and provide comprehensive evaluation of the targets
-Pipeline can produce in few hours comprehensive summary of possible targets for a disease
-The GenAI Promise: How AI is expected to transform clinical trials—faster decision-making, better predictions, and improved efficiency.
-The Risk of Bad Data: Without structured, high-quality, and governed data, Gen AI models risk hallucinations, bias, and unreliable outputs.
-FAIR Data as a Prerequisite: Findable, Accessible, Interoperable, and Reusable (FAIR) data principles lay the foundation for effective and trustworthy Gen AI. FAIR
and Gen AI are not competing forces; they enhance each other. FAIR data enables AI to generate meaningful, actionable insights.
-The Roadmap Forward: Steps pharma organizations can take to ensure data governance and AI readiness for clinical trials.
-Important role of biobanks and recent large proteomic studies/cohorts
-AI versus standard statistical models in the context of omics data analysis
-Examples in metabolic health, cancer, brain health, and infectious diseases
-Wie Bayer Cell-Painting-Assays im großen Maßstab erstellt
-Wie man maschinelles Lernen nutzt, um Mikroskopiebilder für phänotypische Profile einzubetten
-ML-Modelle zur Einbettung chemischer Strukturen
-Analyse multimodaler Daten